说明:adaboost算法,可以用于分类数据,图像
说明:matable下编的一个算法!线性阈值分类器运用AdaBoost算法!
说明:BP-Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
说明:旋转森林最近热门的集成学习分类方法,可用于模式识别分类。当输入数据中存在非线性关系的时候,基于线性回归的模型就会失效,而基于树的算法则不受数据中非线性关系的影响,基于树的方法最大的一个困扰时为了避免过拟合而对树进行剪枝的难度,对于潜在数据中的噪声,大型的树倾向于受影响,导致低偏差(过度拟合)或高方差...