轴承早期故障诊断方法我要分享

Bearing early fault diagnosis method

粒子群-轴承 优化故障诊断 粒子群--特征 粒子群-信号 轴承特征提取

关注次数: 324

下载次数: 1

文件大小: 279KB

代码分类: 电子书籍

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

针对滚动轴承早期故障特征提取困难的问题,提出一种基于参数优化变分模态分解的轴承早期故障诊断方法。首先利用粒子群优化算法对变分模态分解算法的最佳影响参数组合进行搜索,搜索结束后根据所得结果设定变分模态分解算法的惩罚参数和分量个数,并利用参数优化变分模态分解算法对故障信号进行处理。


English Description:

Aiming at the difficulty of feature extraction for early fault of rolling bearing, a method of bearing early fault diagnosis based on parameter optimization variational mode decomposition is proposed. Firstly, the particle swarm optimization algorithm is used to search the best combination of influence parameters of the variational mode decomposition algorithm. After the search, the penalty parameters and the number of components of the variational mode decomposition algorithm are set according to the results, and the fault signal is processed by the parameter optimization variational mode decomposition algorithm


代码预览

参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用_唐贵基.pdf