说明:最详细的k_means程序,采用matlab语言编写,进行了优化,可以自行选择聚类中心的个数,对聚类结果进行染色查看。
说明:SIFT特征点检测监测方法。具有对于图像平移、旋转和尺度变化不变性的优点,成为近十年来最流行的图像特征点检测方法,被广泛用于图像匹配、物体识别、分类等领域。本算法对图像预处理阶段的图像增强算法进行了改进,去除了原本的直方图均衡化图像增强算法,使得图像拼接时间缩短了近一倍,且图像拼接效果依旧良好
说明:目前最先进的标准粒子群算法,是美国人写的,不管是迭代速度还是迭代精度都达到了先进水平,目前正在研究粒子群算法的同学可以看一看,亲测效果不错。本人在原来的基础上进行了代码的优化和改进,加入了适应度函数的变化曲线,并提供了多种测试函数,直接用matlab打开就可以运行。
说明:应用背景 虽然传统的基因选择方法已经能够取得很好的效果,选出的基因子集有利于后续样本分类,但是这些方法主要考虑数据方差和分布的相关性,从而选出的基因可解释性较差且冗余度较高。为了获得最小冗余可解释的基因子集,本文在充分考虑基因类别灵敏度 (Gene to class sensitivity,...