说明:Adaboost 算法的思想是合并多个“弱”分类器的输出以产生有效分类。其主要步骤为 :首先给出弱学习算法和样本空间(工, y) ,从样本空间中找出 m 组训练数据,每组训练数据的权重都是 1 /m。然后用弱学习算法迭代运算 T 次,每次运算后都按照分类结果更新训练数据权重分布,对于分类失败的训练个...
BP Adaboost算法 样本权重 基于BP的强分类器 BP-Adaboost 数据分类算法 分类器
说明:针对矿浆管道工况调整给泄漏检测带来的干扰,准确提取泄漏信号的特征量是降低泄漏误报、漏报的关键。为此,提出了一种基于经验模态分解(EMD)、Hilbert能量谱与变量预测模型(VPMCD)相结合的泄漏检测方法。该方法首先将压力信号分解成若干个固有模态函数(IMF)之和,然后将IMF分量进行Hilber...
分解 工况预测 Hilbert谱 IMF选择 VPMCD